Поможем написать любую работу на подобную тему
Достаточно высокую степень разделения однородных жидких смесей на составляющие компоненты можно достигнуть с помощью ректификации. Сущность процессов, из которых складывается процесс, можно представить на диаграмме (рис. 4.36).
Рис. 4.36. Изображение процесса разделения бинарной смеси ректификацией в диаграмме
Если нагреть исходную смесь состава до температуры кипения, можно получить пар, находящийся с жидкостью в равновесии (т. в ). Конденсация этого пара дает жидкость состава
, обогащенную НК (
).
Последующий нагрев этой жидкости до температуры кипения Т2 приведет к получению пара (т. d), конденсация которого даст жидкость с еще большим содержанием НК – . Проводя таким образом последовательно ряд процессов испарения жидкости и конденсации паров, можно получать в итоге жидкость (дистиллят), представляющую собой практически чистый НК.
В простейшем виде процесс многократного испарения можно осуществить в многоступенчатой установке, состоящей из последовательно соединенных испарителей и конденсаторов. Недостатками такой установки являются большая металлоемкость и значительные потери тепла в окружающую среду.
Наиболее четкое, полное и экономичное разделение исходной смеси на компоненты лучше всего производить в ректификационных колоннах.
Процесс ректификации осуществляется путем многократного контакта между неравновесными жидкой и паровой фазами, движущимися противотоком относительно друг друга.
При взаимодействии фаз между ними происходит массо- и теплообмен, обусловленные стремлением системы к состоянию равновесия. В результате каждого контакта компоненты перераспределяются между фазами: пар обогащается НК, а жидкость – ВК. Многократный контакт фаз приводит к практически полному разделению исходной смеси.
Таким образом, отсутствие равновесия при движении фаз с определенной скоростью относительно друг друга с многократным их контактом является необходимым условием проведения ректификации.
Процессы ректификации осуществляются периодически или непрерывно при различных давлениях: атмосферном, повышенном (для разделения смесей, являющихся газообразными при нормальных температурах) и под вакуумом (для разделения смесей высококипящих веществ).
Непрерывно действующие ректификационные установки наиболее широко распространены в процессах химической технологии. Рассмотрим сущность процесса ректификации на простейшем примере разделения двухкомпонентной смеси (рис. 4.37).
Рис. 4.37. Схема непрерывно действующей ректификационной установки:
1 – колонна; 2 – кипятильник; 3 – дефлегматор; 4 – делитель флегмы;
5 – подогреватель исходной смеси; 6 – холодильник дистиллята;
7 – холодильник остатка; 8 – сборник остатка; 9 – сборник дистиллята; 10 – насос
Колонна 1 снабжается вспомогательным оборудованием, в состав которого, например, входят: кипятильник 2, дефлегматор 3, делитель флегмы 4, подогреватель 5, холодильники 6, 7, сборники жидкостей 8, 9, насосы 10.
Для создания восходящего потока пара в колонне в нижней части её или в кипятильнике 2 подводится тепло для испарения жидкой смеси. Пары проходят через слой жидкости на нижней тарелке.
Пусть концентрация жидкости на первой тарелке равна , а ее температура –
. В результате взаимодействия между жидкостью и паром, имеющим более высокую температуру, жидкость частично испаряется, при этом в пар переходит преимущественно НК. Поэтому на следующую тарелку пар поступает с содержанием НК (
).
Испарение жидкости на тарелке происходит за счет тепла конденсации пара. Из пара конденсируется и переходит в жидкость преимущественно ВК, содержание которого в поступающем паре на тарелку выше равновесного с составом жидкости на тарелке. При равенстве теплот испарения компонентов бинарной смеси для испарения 1 моля НК необходимо сконденсировать 1 моль ВК, т.е. фазы на тарелке обмениваются эквимолекулярными количествами компонентов.
На второй тарелке жидкость имеет состав и содержит больше НК, чем на первой (
). Эта жидкость кипит при более низкой температуре (
). Контактируя с ней, пар состава
частично конденсируется, обогащается НК и удаляется на вышерасположенную тарелку, имея состав
, и т.д.
Таким образом, пар, представляющий собой на выходе из кипятильника почти чистый ВК, по мере движения вверх все более обогащается НК и покидает верхнюю тарелку колонны почти чистым НК.
Пары конденсируются в дефлегматоре 3, охлаждаемом, например, водой, и получаемая жидкость делится на два потока дистиллят – целевой продукт и флегму, которая направляется в верхнюю часть колонны. Следовательно, с помощью дефлегматора в колонне создается нисходящий поток жидкости.
Жидкость, поступающая на орошение колонны (флегма), представляет собой практически чистый НК. Стекая вниз по колонне и взаимодействуя с паром, жидкость все более обогащается ВК, конденсирующимся из пара. Когда жидкость достигает нижней тарелки, она становится практически чистым ВК. Снизу колонны часть ВК выводится остатком в виде целевого продукта, а другая часть поступает на испарение в кипятильник, обогреваемый глухим паром или другим теплоносителем.
На некотором расстоянии от верха колонны к жидкости из дефлегматора присоединяется исходная смесь, поступающая на питающую тарелку колонны. Обычно смесь предварительно подогревают в подогревателе исходной до температуры кипения жидкости на питающей тарелке.
Питающая тарелка делит колонну на две части, имеющие различное назначение. В верхней части колонны наибольшее укрепление паров, т.е. обогащение их НК. Поэтому эта часть колонны называется укрепляющей. В нижней части необходимо максимально удалить из жидкости НК, чтобы в кипятильник стекала жидкость, близкая по составу к чистому ВК. В соответствии с этим эту часть колонны называют исчерпывающей.
Периодически действующие ректификационные установки применяются в производствах небольших масштабов.
Схема периодически действующей установки приведена на рис. 4.38. Исходная смесь загружается в куб 1, где нагревается до температуры кипения и испаряется. Пары проходят через ректификационную колонну 2, взаимодействуя в противотоке с жидкостью, возвращаемой из дефлегматора 3.
В дефлегматоре богатые легколетучим компонентом пары конденсируются, и конденсат поступает в делитель потока 1. Часть жидкости из делителя потока направляется на орошение колонны, а другая часть – дистиллят – проходит через холодильник 5 и направляется в сборник 6 или 7.
После того как достигнут заданный состав остатка в кубе (это можно установить по температуре кипения жидкости), остаток сливают, загружают куб исходной смесью и операцию повторяют.
Сравнивая периодически действующую колонну с ректификационной колонной непрерывного действия, следует отметить, что первая колонна работает, подобно верхней части непрерывнодействующей колонны, как колонна для укрепления паров, а куб выполняет роль исчерпывающей части.
Рис. 4.38. Схема установки
периодической ректификации:
1 – куб; 2 – насадочная ректификационная колонна;
3 – дефлегматор; 4 – делитель
флегмы; 5 – холодильник;
6 – сборники дистиллята
Допущения, принимаемые для расчета процессов ректификации. Мольные теплоты испарения компонентов бинарной жидкой смеси обычно близки по величинам, в отличие массовых, которые существенно различаются между собой. В этой связи количества и составы фаз при анализе и расчете процесса наиболее удобно выражать в мольных величинах. В соответствии с этим расходы фаз наиболее целесообразно выражать в молях, а составы – в мольных долях НК.
Примем следующие допущения, мало искажающие результаты, но существенно упрощающие расчет.
1. Разделяемая смесь следует правилу Трутона, согласно которому отношение мольной теплоты испарения или конденсации к абсолютной температуре кипения
для всех жидкостей является приближенно постоянной. Для смеси, состоящей из
компонентов:
,
или при ,
.
Отсюда следует, что при конденсации 1 кмоль ВК в колонне испаряется
1 кмоль НК, т.е. количество паров (в кмолях), поднимающихся по колонне постоянно ().
2. Состав пара , удаляющегося из колонны в дефлегматор, равен составу дистиллята
. При этом допускается, что укрепляющим действием дефлегматора в процессе конденсации паров можно пренебречь и принять
, где
– состав дистиллята в паровой фазе.
3. Состав пара , поднимающегося из кипятильника в колонну, равен составу жидкости
, стекающей в кипятильник из нижней части колонны. Принимая
, пренебрегают исчерпывающим действием кипятильника, т.е. изменением состава фаз при испарении в нем жидкости.
4. Теплоты смешения компонентов разделяемой смеси равны нулю.
Кроме того, в расчетах принимают, что смесь, подлежащая разделению, поступает в колонну нагретой до температуры кипения на питающей тарелке.
Для составления материального баланса ректификационной колонны непрерывного действия обозначим: – количество смеси, поступающей на ректификацию;
и
– количество получающегося дистиллята и остатка соответственно;
,
,
– содержание легколетучего компонента в исходной смеси, дистилляте и остатке соответственно (мольн. доли).
Материальный баланс процесса разделения:
для всей смеси
;
для легколетучего компонента в смеси
.
Из этих равенств обычно вычисляют неизвестные количества дистиллята и остатка:
;
.
Уравнения рабочих линий. Материальный баланс ректификации по летучему компоненту может быть выражен общим для всех массообменных процессов равенством
.
Пусть количество взаимодействующих паров составляет , а жидкости –
. Тогда, согласно принятым обозначениям, расход пара
, расход жидкости для верхней части ректификационной колонны –
для нижней части аппарата –
, где
– флегмовое число,
– число питания. Таким образом, для верхней и нижней частей аппарата уравнения материального баланса имеют вид:
; (4.44)
. (4.45)
Для произвольного сечения верхней части аппарата, где рабочие концентрации и
, и верха, где концентрация
и
, из уравнения (4.45) получим
(4.46)
или
. (4.47)
Для произвольного сечения нижней части аппарата, где рабочие концентрации и
, и низа, где концентрация
и
, из уравнения (4.45) найдем
или
. (4.48)
Уравнения (4.47) и (4.48) являются уравнениями прямых линий рабочих концентраций для верхней и нижней частей ректификационного аппарата.
Кроме того, из уравнения (4.44) для сечения, соответствующего вводу исходной смеси (
), и верхней части аппарата (
,
) получаем
,
откуда
.
Положения линий рабочих концентраций в диаграмме зависят не только от состава исходной смеси, но также от ее тепловых параметров. Возможны следующие случаи питания исходной смесью: 1)при температуре ниже, чем температура кипения; 2) при температуре кипения; 3) смесью насыщенного пара и жидкости; 4) насыщенным паром; 5) перегретым паром.
Рассмотрим наиболее распространенный случай питания аппарата жидкой смесью при температуре кипения. В этом случае возможны два предельных положения рабочих линий (рис. 4.39): 1-3´ для верхней и 3-2 для нижней части колонны.
Первое положение соответствует бесконечно большому флегмовому числу, при котором отрезок, отсекаемый на оси ординат рабочей линией верхней части колонны, , и, следовательно, изменение рабочих концентраций в аппарате отвечает уравнению
и обе рабочие линии лежат на диагонали диаграммы. В этих условиях аппарат работает без отбора дистиллята и кубовой жидкости. Как следует из рисунка, бесконечно большому флегмовому числу соответствует максимальная движущая сила.
Рис. 4.39. Расположение рабочих линий и равновесия с вариантом питания колонны исходной смесью при температуре кипения
Второе предельное положение рабочих линий (1-3´´-2) соответствует пересечению их на равновесной кривой в точке 3´´. Очевидно, что в этой точке движущая сила равна нулю, т.е.
и, следовательно, ректификационный аппарат должен иметь бесконечно большую поверхность фазового контакта. Флегмовое число при этом имеет наименьшее значение:
,
где – состав пара, находящегося в равновесии с жидкостью, поступающей на ректификацию.
Положение рабочих линий 1-3-2 соответствует рабочему состоянию ректификационной аппаратуры. Точка 3, очевидно, может приближаться либо к верхнему пределу 3´´, либо к нижнему 3´. Соответственно этому изменяются флегмовое число и движущая сила процесса.
Поскольку проведение процесса ректификации связано с испарением жидкости и соответствующими затратами тепла, можно сформулировать одно из важнейших правил ректификации: с уменьшением флегмового числа и, следовательно, затрат тепла на проведение процесса уменьшается движущая сила и наоборот.
Периодически действующие установки, в свою очередь, подразделяются на установки, работающие в условиях режима постоянного флегмового числа, и установки, работающие в условиях, обеспечивающих постоянный состав дистиллята.
Для обеспечения постоянного состава дистиллята процесс ректификации необходимо проводить при непрерывно изменяющемся флегмовом числе: минимальном в начале процесса и максимальном в конце. По мере отгонки летучего компонента концентрация его в кубе уменьшается до , проходя через ряд промежуточных значений
,
и т.д. Определение положения точек а, б и т.д. (рис. 4.40а), характеризующих соответствующее флегмовое число, возможно путем подбора, а именно: их положение должно отвечать равенству чисел единиц переноса для границ концентраций
,
и т.д. в пределах концентраций
.
Очевидно, что проведение процесса ректификации периодическим методом при режиме практически затруднительно, поскольку для этого требуется непрерывное и строго программное изменение питания колонны парами и флегмой. Поэтому этот режим ректификации в промышленности применяют очень редко.
Широко распространен процесс ректификации, проводимый периодическим методом в условиях поддержания постоянного флегмового числа. Этот процесс для малотоннажных производств наиболее предпочтителен даже в сравнении с процессом непрерывной ректификации. Это преимущество заключается в том, что разделение смеси из любого числа компонентов возможно при помощи одного ректификационного аппарата.
При постоянном флегмовом числе наклон рабочих линий не зависит от концентраций (рис. 4.40б).
Пусть в первый момент ректификации концентрация летучего компонента в кубовой жидкости составляет , а дистилляте
. По мере течения процесса концентрация летучего компонента в кубовой жидкости будет уменьшаться и принимать значения
,
и т.д., вплоть до конечного значения
. Соответственно будет уменьшаться и концентрация летучего компонента в дистилляте:
,
,
и т.д. В итоге процесса будет получен дистиллят среднего состава в пределах
и остаток состава
.
По ряду значений флегмовых чисел, отвечающих различным концентрациям летучего компонента в жидкости, можно установить зависимость и путем графического интегрирования найти среднее флегмовое число:
.
Предыдущие материалы: | Следующие материалы: |