Подобие процессов переноса массы


Системы уравнений конвективной диффузии и уравнений движения не имеют общего решения. Поэтому, как и в случае гидромеханических и теплообменных процессов, можно методами теории подобия найти связь между переменными, характеризующими процесс переноса в потоке фазы, в виде обобщенного (критериального) уравнения массоотдачи.

В это уравнение входят критерии подобия, учитывающие массообмен на границе фазы (подобие граничных условий) и в основной массе (ядре) фазы.

Подобие граничных условий можно установить, допуская наличие пограничного слоя, в котором перенос осуществляется только молекулярной диффузией. Количество вещества, переходящего из ядра к границе фазы, составляет

.

То же количество вещества переносится молекулярной диффузией через пограничный слой:

.

Приравнивая выражения и проведя сокращения, получим зависимость, характеризующую подобие условий переноса на границе фазы:

.

Обозначив , запишем это уравнение в виде

.

Из этого уравнения делением левой на правую часть, сократив подобные члены и опустив знак минус, получим безразмерный комплекс, который для  подобных систем является одинаковым (одним и тем же), т.е. .

Данный комплекс величин, при выражении их в единицах одной системы, является безразмерным и в соответствии с первой теоремой подобия представляет собой критерий подобия. Этот комплекс называют диффузионным критерием Нуссельта

.

Диффузионный критерий Нуссельта выражает отношение интенсивности переноса вещества в ядре фазы к интенсивности переноса в диффузионном пограничном подслое, где массообмен определяется молекулярной диффузией.

Из дифференциального уравнения конвективной диффузии

…)

получаем безразмерные комплексы делением всех членов уравнения на ):

/;    .

Вычеркнув в полученных комплексах символы дифференцирования и направления, после сокращения получим диффузионный критерий Фурье

или,  чтобы исключить математические действия с малыми величинами в виде

,

диффузионный критерий Пекле

.

Равенство критериев   в сходственных точках подобных систем – необходимое условие подобия неустановившихся процессов массоотдачи. Это равенство характеризует постоянство отношения изменения концентрации во времени к изменению концентрации вследствие чисто молекулярного переноса.

Критерий выражает меру отношения массы вещества, перемещаемой путем конвективного переноса и молекулярной диффузии, в сходственных точках подобных систем.

Подобие распределения концентраций и одновременно подобие скоростей в потоках соблюдаются в общем случае в геометрически подобных системах при следующих условиях:

;   ;   .

Во многих случаях вместо критерия  используют отношение критериев  и , которое представляет собой диффузионный критерий Прандтля:

.

В критерий входят только величины, отражающие физические свойства потока. Этот критерий характеризует постоянство отношения физических свойств жидкости (газа) в сходственных точках подобных потоков. Критерий Прандтля рассматривается как мера подобия профилей скорости и концентрации в процессах массоотдачи.

При 1 толщина диффузионного подслоя равна толщине гидродинамического ламинарного подслоя.

Необходимой предпосылкой подобия процессов массоотдачи является соблюдение гидродинамического подобия, которое требует, чтобы в сходственных точках подобных потоков были равны не только критерии Рейнольдса, но и критерии Фруда. Критерий Фруда часто бывает удобно заменить критерием Галилея () или Грасгофа (, где – коэффициент объемного расширения), в которые не входит скорость потока.

Определяемой величиной при расчете массоотдачи является коэффициент , величину которого находят из диффузионного критерия Нуссельта. Этот критерий является определяемым.   

Полученные критерии подобия дают возможность найти уравнение подобия конвективной диффузии:

,

где Г1, Г2, …Гn – симплексы геометрическое подобие систем, представляющие отношения характерных геометрических размеров l1l2 , …ln  к некоторому определяющему размеру l0 .

Применительно к конкретным задачам массообмена общее уравнение подобия может быть упрощено. При рассмотрении стационарных процессов из уравнения исключается критерий Фурье

.

При вынужденном движении можно пренебречь естественной конвекцией

 или .

В условиях естественной конвекции 

 или .

Расчетные зависимости называются критериальными уравнениями массоотдачи. Численные значения входящих в них постоянных коэффициентов A  и показателей степеней  n и  m устанавливают при обработке опытных данных.

Предыдущие материалы: Следующие материалы: