Поможем написать любую работу на подобную тему
Закон Фурье. Основным законом передачи тепла теплопроводностью является закон Фурье, согласно которому количество тепла , передаваемого теплопроводностью, пропорционально градиенту температуры
, времени
и площади сечения
, перпендикулярного направлению теплового потока:
.
Коэффициент пропорциональности в этом уравнении называется коэффициентом теплопроводности. Этот коэффициент характеризует способность тел проводить тепло. Согласно уравнению теплопроводности, коэффициент имеет следующую размерность:
.
Коэффициент теплопроводности показывает, какое количество тепла проходит вследствие теплопроводности через 1 м2 поверхности в единицу времени при разности температур 1 К, приходящейся на 1 м длины нормали к изотермической поверхности.
Коэффициент теплопроводности веществ зависит от их природы и агрегатного состояния. Пределы изменения: для газов – 0,005–0,5; для жидкостей – 0,08–0,7; для металлов – 2,3–458; теплоизоляционных и строительных материалов – 0,02–3,0 Вт/(м·К).
Для металлов, применяемых в химическом машиностроении, коэффициенты теплопроводности составляют: для нержавеющей стали – 14–23; свинца – 35; углеродистой стали – 45; чугуна – 63; алюминия – 204; меди – 384; серебра – 458 Вт/( м·К).
Коэффициенты теплопроводности веществ зависят от температуры и давления. Для газов они возрастают с повышением температуры и мало зависят от давления; для жидкостей с увеличением температуры они уменьшаются, за исключением воды и глицерина. Теплопроводность твердых тел в большинстве случаев растет с повышением температуры.
Дифференциальное уравнение теплопроводности. Процесс распространения тепла теплопроводностью может быть описан дифференциальным уравнением, полученным на основе закона сохранения энергии, в предположении неизменности физических свойств тела по направлениям и во времени ().
Для вывода дифференциального уравнения рассматривается элементарный параллелепипед, выделенный из тела, с гранями (рис. 3.1).
Рис. 3.1. Элементарный параллелепипед к выводу
дифференциального уравнения теплопроводности
Количество тепла, входящего в параллелепипед через грань в направлении оси за время
, по закону Фурье
,
выходящего через противоположную грань параллелепипеда:
.
Разность между количеством тепла, вошедшего и вышедшего через грань в направлении оси за время
:
.
Для всех граней параллелепипеда
.
На основе закона сохранения энергии количество тепла представляет тепло, которое идет на изменение энтальпии параллелепипеда за время
:
.
Сопоставив выражения для и произведя сокращения, получим дифференциальное уравнение теплопроводности
или в сокращенной записи:
.
Множитель, входящий в уравнение теплопроводности , называется коэффициентом температуропроводности. Этот коэффициент характеризует теплоинерционные свойства веществ: при прочих равных условиях быстрее нагревается или охлаждается то тело, которое обладает большим коэффициентом температуропроводности:
.
Уравнение позволяет решать задачи, связанные с распространением тепла теплопроводностью как при неустановившихся, так и при установившихся тепловых потоках. При решении конкретных задач дифференциальное уравнение дополняется начальными и граничными условиями.
Теплопроводность плоской стенки. Рассмотрим передачу тепла теплопроводностью через плоскую стенку, длина и ширина которой бесконечно велики по сравнению с ее толщиной в направлении оси
.
Температуры стенок обозначим как , причем
. При установившемся процессе количество тепла, подведенного к стенке, равно и количеству тепла, отведенного от нее, и не изменяется во времени. В связи с тем, что температура меняется только в направлении оси
, дифференциальное уравнение одномерного температурного поля имеет вид
.
Интегрирование этого уравнения приводит к функции
.
Константы интегрирования определяются исходя из следующих граничных условий:
при ,
;
при ,
,
или ,
откуда .
Подставив значения констант в уравнение, получим
.
Тогда для температурного градиента
.
После подстановки выражения для температурного градиента в уравнение теплопроводности получим для количества тепла
или
.
Если плоская стенка состоит из слоев, отличающихся друг от друга теплопроводностью и толщиной, то при установившемся процессе через каждый слой стенки пройдет одно и то же количество тепла, которое может быть выражено для различных слоев уравнениями:
или
;
или
;
…………………………………………………..
или
.
Произведем сложение правых и левых частей этих уравнений. В результате получим
,
откуда
Зависимости для расчета теплового потока через однослойную и многослойную цилиндрические стенки приведем без вывода:
;
.
При расчет теплового потока можно вести как для плоской стенки.
Предыдущие материалы: | Следующие материалы: |