Дифференциальные уравнения движения Навье-Стокса


При движении вязкой жидкости в потоке, кроме сил давления и тяжести, действуют также силы трения. Для трехмерного потока проекция равнодействующих сил трения на ось имеет вид

.

Суммы проекций всех сил на оси координат должны быть равны произведению массы жидкости, заключенной в параллелепипеде, на проекции ускорения на оси координат:

 ;

;

.

После сокращения получим дифференциальные уравнения Навье-Стокса, описывающие движение вязкой капельной жидкости:

 ;

;

.

Соответствующие субстанциональные производные в уравнениях могут быть выражены как для неустановившегося, так и установившегося течения жидкости.

Правые части уравнений выражают произведение массы единицы объема  на проекцию ускорения, т.е. представляют собой равнодействующие сил инерции, возникающих в движущейся жидкости.

В левых частях произведение отражает влияние сил тяжести, частные производные , ,  – влияние сил гидростатического давления, а произведение вязкости на сумму вторых производных проекций скорости – влияние сил трения на движущую жидкость. Каждый член уравнения имеет размерность соответствующей силы, отнесенной к единице объема жидкости.

Полное описание движения вязкой жидкости возможно путем решения уравнений Навье-Стокса совместно с дифференциальным уравнением неразрывности потока. Однако уравнения Навье-Стокса не могут быть решены в общем виде.

Решение возможно либо для простых случаев при введении ряда допущений, либо после преобразования этих уравнений методами теории подобия.

Предыдущие материалы: Следующие материалы: