Поможем написать любую работу на подобную тему
В гидростатике равновесие жидкостей рассматривается в состоянии относительного покоя, при котором в движущейся жидкости ее частицы не перемещаются друг относительно друга. Силы внутреннего трения отсутствуют, поэтому жидкость можно считать идеальной.
В состоянии покоя форма объема жидкости не изменяется и подобно твердому телу перемещается как единое целое.
Независимо от вида покоя на жидкость действуют силы тяжести и давления. В случае относительного покоя необходимо учитывать силу инерции переносного движения жидкости. Соотношение между силами, действующими на жидкость, находящуюся в состоянии покоя, который и определяет условия равновесия этой жидкости, выражается дифференциальными уравнениями равновесия Эйлера.
В объеме жидкости, находящейся в покое (рис. 2.2), выделим элементарный параллелепипед объемом dV с ребрами dx, dy, dz, расположенными параллельно осям координат x, y, и z.
Согласно основному принципу статики, сумма проекций на оси координат всех сил, действующих на элементарный объем, находящийся в равновесии, равна нулю.
Запишем уравнения равновесия для осей :
;
;
.
Раскрыв скобки, получим:
,
,
.
После преобразований получим дифференциальные уравнения Эйлера:
;
;
.
![]() |
Рис. 2.2. К выводу дифференциальных уравнений равновесия Эйлера
Для нахождения закона распределения давления во всем объеме покоящейся жидкости p=f(x, y, z) необходимо проинтегрировать систему уравнений.
Основное уравнение гидростатики. Из уравнений следует, что p=f(z), т.к. и , иначе жидкость должна была бы двигаться по горизонтали.
В этом случае частная производная изменяется на полную производную
, тогда
,
,
,
,
или .
После интегрирования
. (2.1)
Для двух произвольных горизонтальных плоскостей 1 и 2 основное уравнение гидростатики имеет вид
.
Это уравнение можно записать как
,
или
. (2.2)
Уравнение (2.2) является выражением закона Паскаля, согласно которому давление, создаваемое в любой точке покоящейся несжимаемой жидкости, передается одинаково всем точкам ее объема.
При изменении p0 в точке z0 на какую-либо величину давление p во всякой другой точке изменяется на эту же величину (рис. 2.3).
![]() |
Предыдущие материалы: | Следующие материалы: |