Течение капельной жидкости с кавитацией


 

Подпись:  
Рисунок 6.2 - Изменение коэффициента местного сопротивления ζ при кавитации

Подпись:  
Рисунок 6.1 – Схема установки
для демонстрации кавитации
В некоторых случаях при движении жидкости в закрытых руслах происходят явления, связанные с изменением агрегатного состояния жидкости, т.е. с превращением ее в пар, а также с выделением из жидкости растворенных в ней газов. Например, при течении жидкости через местное сужение трубы увеличивается скорость и падает давление. Если абсолютное давление при этом достигает значения, равного давлению насыщенных паров этой жидкости при данной температуре, или давлению, при котором начинается выделение из нее растворенных газов, то в данном месте потока начинается интенсивное парообразование (кипение) и выделение газов. В расширяющейся части скорость потока уменьшается, а давление возрастает, и выделение паров и газов прекращается;  выделившиеся пары конденсируются, а газы постепенно вновь растворяются. Это местное нарушение сплошности течения с образованием паровых и газовых пузырей (каверн), обусловленное местным падением давления в потоке, называется кавитацией.

Наглядно это явление можно продемонстрировать на простом устройстве (рисунок 6.1). Вода или иная жидкость под давлением в несколько атмосфер подводится к регулировочному крану (вентилю) А и далее протекает через прозрачную трубку Вентури, которая сначала плавно сужает поток, затем еще более плавно расширяет и через кран Б выводит в атмосферу.

При небольшом открытии регулировочного крана и, следовательно, при малых значениях расхода и скорости жидкости падение давления в узком месте трубки незначительно, поток вполне прозрачен, и кавитация отсутствует. При постепенном открытии крана происходит увеличение скорости жидкости в трубке и падение абсолютного давления.

При некотором значении этого давления, которое можно считать равным давлению насыщенных паров (рабс2 = рн.п), в узком месте трубки появляется отчетливо видимая зона кавитации, представляющая собой область местного кипения жидкости и последующей конденсации паров. Размеры зоны кавитации возрастают по мере дальнейшего открытия крана, т. е. при увеличении давления в сечении 1-1, а следовательно, и расхода. Однако как бы при этом ни возрастал расход, давление в узком сечении 2-2 сохраняется строго постоянным потому, что постоянно давление насыщенных паров.

Кавитация сопровождается характерным шумом, а при длительном ее воздействии также эрозионным разрушением металлических стенок. Последнее объясняется тем, что конденсация пузырьков пара (и сжатие пузырьков газа) происходит со значительной скоростью, частицы жидкости, заполняющие полость конденсирующегося пузырька, устремляются к его центру и в момент завершения конденсации (схлопывания пузырька) вызывают местные удары, т. е. значительное повышение давления в отдельных точках. Материал при кавитации разрушается не там, где выделяются пузырьки, а там, где они конденсируются.

При возникновении кавитации значительно увеличивается сопротивление трубопроводов и, следовательно, уменьшается их пропускная способность, потому что каверны уменьшают живые сечения потоков, скорость в которых резко возрастает, и, как следствие, резко возрастает коэффициент местных сопротивлений (см. рисунок 6.2).

Кавитация в обычных случаях является нежелательным явлением, и ее не следует допускать в трубопроводах и других элементах гидросистем. Она может возникать во всех местных гидравлических сопротивлениях, где поток претерпевает местное сужение с последующим расширением, например, в кранах, вентилях, задвижках, диафрагмах, жиклерах и др. В отдельных случаях возникновение кавитации возможно также и без расширения потока вслед за его сужением, а также в трубах постоянного сечения при увеличении геометрической высоты и гидравлических потерь.

Кавитация может иметь место в гидромашинах (насосах и гидротурбинах), а также на лопастях быстро вращающихся гребных винтов. В этих случаях следствием кавитации является резкое снижение коэффициента полезного действия машины и затем постепенное разрушение ее деталей, подверженных воздействию кавитации.

В гидросистемах кавитация может возникать в трубопроводах низкого давления — во всасывающих трубопроводах. В этом случае ее область распространяется на значительную часть всасывающего трубопровода или даже на всю его длину. Поток в трубопроводе при этом делается двухфазным, состоящим из жидкой и паровой фаз.

Подпись:  
Рисунок  6.3 - Схемы двухфазных потоков

В начальной стадии паровыделения паровая фаза может быть в виде мелких пузырьков, приблизительно равномерно распределенных по объему движущейся жидкости (рисунок 6.3, а). При дальнейшем парогазовыделении происходит укрупнение пузырьков, которые при горизонтальном расположении трубы движутся преимущественно в верхней части ее сечения (рисунок 6.3, б).

 

Очевидно, что при столь значительной парогазовой фазе нормальная подача жидкости по трубопроводу нарушается. Конденсация выделившихся паров (частичная или полная) и растворение газа происходят в насосе, где давление значительно повышается, и в напорном трубопроводе, по которому жидкость движется под высоким давлением от насоса к потребителю.

 

Предыдущие материалы: Следующие материалы: