Практические способы определения коэффициента гидравлического трения λ для напорных технических труб


 

Трубы, находящиеся в эксплуатации, подвергаются коррозии и покрываются различными отложениями, имеют разнозернистую шероховатость; выступы шероховатости различной формы и размеров, расстояние между ними неодинаковое (рисунок 3.20).

Опыты, проведенные рядом авторов с техническими трубами, показали, что характер зависимости коэффициента λ от числа Рейнольдса отличается от результатов, полученных Никурадзе, особенно в области доквадратичного сопротивления. Здесь в отличие от графика Никурадзе кривые Δr = const, опускаясь вниз, постепенно переходят от вида, соответствующего области гладкого сопротивления (где согласно формуле Блазиуса ), к виду, отвечающему области квадратичного сопротивления. Таким образом, в области доквадратичного сопротивления потеря напора по длине пропорциональна средней скорости υ в степени 1,75 < т < 2,0. Такой постепенный переход объясняют тем, что в случае разнозернистой шероховатости при увеличении числа Рейнольдса, а следовательно, уменьшении толщины вязкого подслоя δ выступы шероховатости вступают в соприкосновение с турбулентным потоков не все одновременно, а сначала наиболее высокие, затем средние и только при числах Re, соответствующих квадратичной области сопротивления, вязкий подслой «раскрывает» все выступы шероховатости.

Имея в виду разнозернистую шероховатость, в расчетные зависимости для технических труб вводят некоторую среднюю высоту выступов, именуемую эквивалентной шероховатостью, которую обозначим .

При турбулентном режиме для определения коэффициента λ в случае движения жидкости в напорных технических трубах используются или экспериментальные графики, или эмпирические и полуэмпирические формулы. Эти формулы обычно рекомендуются для одной из соответствующих областей сопротивления, приведенных в предыдущем параграфе. Следовательно, прежде чем обращаться к той или иной формуле, необходимо установить область сопротивления, граничными условиями существования которой являются так называемые нижнее    и верхнее  предельные числа Рейнольдса.

Согласно А. Д. Альтшулю эти числа могут быть определены по приближенным формулам:

, ,

где .

В случае 10000 < Re < , где Re — число Рейнольдса, соответствующее рассматриваемому потоку, получаем практически область гладких труб, для которой обычно рекомендуются либо формула Л. Прандтля

,                                          (3.31)

или более удобная формула Блазиуса

 ,

справедливая при числах Рейнольдса Re < 100000.

Область доквадратичного сопротивления отвечает числам Рейнольдса, лежащим в пределах

 < Re  < .

Для определения коэффициента λ в этой области сопротивления рекомендуется обобщенная формула Кольбрука, которую он предложил в 1938 г., основываясь на своих опытах с учетом исследований других авторов

,                                                           (3.32)

или более удобная для вычислений формула А. Д. Альтшуля

.                                                       (3.33)

В случае Re ≥  имеем квадратичную область сопротивления, для которой формула упрощается и приобретает вид формулы Л. Прандтля для шероховатых труб

,                                                              (3.34)

а формула А, Д. Альтшуля (87) приводится к формуле Шифринсона .

Величину средней высоты выступов шероховатости , которая входит в расчетные формулы, установить непосредственным измерением практически невозможно, так как на распределение скоростей по сечению и касательные напряжения влияет не только высота выступов, но их форма, а также их шаг расположения на стенке. Поэтому значение для данной трубы находят экспериментально следующим образом. Рассматривая квадратичную область сопротивления опытным путем, пользуясь формулой Вейсбаха-Дарси (3.29), определяют для данной трубы величину λ. Затем по формуле (88) вычисляют искомое значение . Найденную таким образом величину  называют эквивалентной шероховатостью, численные значения которой для разных труб приводятся в справочных таблицах.

 

Предыдущие материалы: Следующие материалы: