Дифференциальное уравнение равновесия жидкости. Уравнение Эйлера.


Дифференциальные уравнения равновесия покоящейся жидкости иначе называют дифференциальными уравнениями Эйлера. Они получены для общего случая относительного покоя жидкости. Возможны следующие варианты относительного покоя.

Описание: Image

Рисунок

3.1 Варианты относительного покоя

Первый вариант соответствует абсолютному покою или равномерному движению сосуда с жидкостью. Такой вариант рассматривался при выводе основного уравнения гидростатики.

Второй вариант – вращение сосуда с жидкостью с постоянной угловой скоростью ω вокруг центральной оси. Несмотря на то, что вся масса жидкости вращается вместе с сосудом, частицы жидкости друг относительно друга не перемещаются, следовательно, весь объём жидкости, как и в первом случае, представляет собой как бы твёрдое тело. Давление в каждой точке жидкости не меняется во времени и зависит только от координат. По этим причинам жидкость подпадает под определение покоящейся.

Третий вариант аналогичен второму, только вращение осуществляется вокруг произвольно расположенной вертикальной оси. Во втором и третьем случае свободная поверхность жидкости принимает новую форму, соответствующую новому равновесному положению жидкости.

В четвёртом варианте сосуд с жидкостью движется прямолинейно и равноускоренно. Такой случай проявляется, например, в процессе разгона или остановки автоцистерны с жидкостью. В этом случае жидкость занимает новое равновесное положение, свободная поверхность приобретает наклонное положение, которое сохраняется до изменения ускорения. Частицы жидкости друг относительно друга находятся в покое, и давление зависит только от координат.

Во всех перечисленных случаях на жидкость действуют, силы веса, силы инерции, силы давления.

Описание: Image

Рисунок

3.2 Вывод дифференциальных уравнений

Рассмотрим в произвольной системе координат X,Y,Z произвольную точку A. Вблизи этой точки выделим элементарный объём  в форме прямоугольного параллелепипеда, грани которого для простоты математических выражений параллельны координатным плоскостям.

Отметим следующее:

- давление является функцией координат (при этом в любой точке по всем направлениям оно одинаково),

- при переходе к точкам Ax( Ay, Az) меняется только одна координата на бесконечно малую величину dx( dy, dz), поэтому функция получает приращение только по одной координате,

- это приращение равно частному дифференциалу по соответствующей координате

Разность давлений, действующих на противоположные грани параллелепипеда (внутрь рассматриваемого объёма), перпендикулярные соответствующим осям, будет иметь вид:

Исходя из этого, определим разности сил, вызванных давлением, в проекции на оси координат

Кроме сил давления на параллелепипед будут действовать инерционные силы  в общем случае определяемые массой и ускорениями X, Y, Z на соответствующие оси

Учитывая, что параллелепипед находится в покое, сумма сил, действующих на него, равна 0:

Разделив систему уравнений сил на массу рассматриваемого параллелепипеда, получим систему уравнений Эйлера:

На практике, чтобы избавиться от частных производных, используют одно уравнение, заменяющее систему. Для этого первое уравнение умножают на dx, второе на dy, третье на dz и складывают их:

где

В этой формуле сумма в скобках является полным дифференциалом давления, который в результате оказывается равным

Полученное уравнение показывает, как изменяется давление при изменении координат внутри покоящейся жидкости для общего случая относительного покоя. Это уравнение впервые получил Леонард Эйлер в 1755

Предыдущие материалы: Следующие материалы: