Гидростатическое давление


В покоящейся жидкости всегда присутствует сила давления, которая называется гидростатическим давлением. Жидкость оказывает силовое воздействие на дно и стенки сосуда. Частицы жидкости, расположенные в верхних слоях водоема, испытывают меньшие силы сжатия, чем частицы у дна.

Рассмотрим резервуар с плоскими вертикальными стенками, наполненный жидкостью (рис. 2.1). На дно резервуара действует сила P равная весу налитой жидкости , т.е. .

Если эту силу P разделить на площадь дна , то мы получим среднее гидростатическое давление.

Гидростатическое давление обладает свойствами.

Свойство 1. В любой точке жидкости гидростатическое давление перпендикулярно площадке касательной к выделенному объему и действует внутрь рассматриваемого объема жидкости.

Выделим на боковой стенке резервуара площадку Sбок (на рис. 2.1 заштриховано). Гидростатическое давление действует на эту площадку в виде распределенной силы, которую можно заменить одной равнодействующей, которую обозначим P. Предположим, что равнодействующая гидростатического давления P, действующая на эту площадку, приложена в точке А и направлена к ней под углом φ (на рис. 2.1 обозначена штриховым отрезком со стрелкой). Тогда сила реакции стенки R на жидкость будет иметь ту же самую величину, но противоположное направление (сплошной отрезок со стрелкой). Указанный вектор R можно разложить на два составляющих вектора: нормальный Rn (перпендикулярный к заштрихованной площадке) и касательный к стенке.

Описание: C:\Users\Павлик\Desktop\Фрагмент.jpg

Рисунок

2.1 К доказательству свойства 1

Сила нормального давления Rn вызывает в жидкости напряжения сжатия. Этим напряжениям жидкость легко противостоит. Сила Rτ действующая на жидкость вдоль стенки, должна была бы вызвать в жидкости касательные напряжения вдоль стенки и частицы должны были бы перемещаться вниз. Но так как жидкость в резервуаре находится в состоянии покоя, то составляющая отсутствует. Отсюда можно сделать вывод первого свойства гидростатического давления.

Свойство 2. Гидростатическое давление неизменно во всех направлениях.

Описание: D:\РАБОТА\ГИДРАВЛИКА\лекции\Мои лекции\Вспомогательный материал\К лекции 2.jpg

Рисунок

2.2 К доказательству свойства 2

В жидкости, заполняющей какой-то резервуар, выделим элементарный кубик с очень малыми сторонами , ,  (рис.2.2). На каждую из боковых поверхностей будет давить сила гидростатического давления, равная произведению соответствующего давления Px, Py , Pz на элементарные площади. Обозначим вектора давлений, действующие в положительном направлении (согласно указанным координатам) как P'x, P'y, P'z, а вектора давлений, действующие в обратном направлении соответственно P''x, P''y, P''z. Поскольку кубик находится в равновесии, то можно записать равенства

P'yΔz=P''yΔz

P'xΔz = P''xΔz

P'xΔy + γΔx, Δy, Δz = P''xΔy

где γ - удельный вес жидкости; Δx, Δy, Δz - объем кубика.

Сократив полученные равенства, найдем, что

P'x = P''x; P'y = P''y; P'z + γΔz = P''z

Членом третьего уравнения γΔz, как бесконечно малым по сравнению с P'z и P''z, можно пренебречь и тогда окончательно

P'x = P''x; P'y = P''y; P'z=P''z

Вследствие того, что кубик не деформируется (не вытягивается вдоль одной из осей), надо полагать, что давления по различным осям одинаковы, т.е.

P'x = P''x = P'y = P''y = P'z=P''z

Это доказывает второе свойство гидростатического давления.

Свойство 3. Гидростатическое давление в точке зависит от ее координат в пространстве.

Это положение не требует специального доказательства, так как ясно, что по мере увеличения погружения точки давление в ней будет возрастать, а по мере уменьшения погружения уменьшаться. Третье свойство гидростатического давления может быть записано в виде

P=f(x, y, z)

Предыдущие материалы: Следующие материалы: