Виды насадков и их применение. Истечение жидкости через насадки


Насадкой называется отрезок трубы, длина которого в несколько раз больше внутреннего диаметра. Рассмотрим случай, когда к отверстию в стенке резервуара присоединен насадок диаметром d, равным диаметру отверстия.

На рис. 44 показаны наиболее распространенные виды насадок, применяемые на практике:

а - цилиндрический внешний; б - цилиндрический внутренний; в -конический расходящийся; г - конический сходящийся; д - коноидально-расходящийся; е - коноидальный.



Цилиндрические насадки встречаются в виде деталей гидравлических систем машин и сооружений. Конические сходящиеся и коноидальные насадки применяют для увеличения скорости и дальности полета струи воды (пожарные брандспойты, стволы гидромониторов, форсунки, сопла и др.).

Конические расходящиеся насадки применяют для уменьшения скорости и увеличения расхода жидкости и давления на выходе во всасывающих трубах турбин и др. В эжекторах и инжекторах также имеются конические насадки, как основной рабочий орган. Водопропускные трубы под насыпями дорог (с точки зрения гидравлики) также представляют собой насадки.

Рассмотрим истечение через внешний цилиндрический насадок (рис. 45).

Струя жидкости при входе в насадок сжимается, а потом расширяется и заполняет все сечение. Из насадка струя вытекает полным сечением, поэтому коэффициент сжатия, отнесенный к выходному сечению, , а коэффициент расхода

.

Составим уравнение Д. Бернулли для сечений 1-1 и 2-2

,

где – потери напора.

Для истечения из открытого резервуара в атмосферу аналогично истечению через отверстие уравнение Д. Бернулли приводится к виду

.                                   (144)

Потери   напора   в   насадке  складываются   из   потерь  па  входе   и   на расширение сжатой струи внутри насадка. (Незначительными потерями в резервуаре   и   потерями   по   длине   насадка   ввиду   их   малости   можно пренебречь.) Итак,

.                 (145)

По уравнению неразрывности можем записать:

,

откуда

.                 (146)

Подставляя значение  в уравнение (145), имеем

,   (147)

где обозначено

.                         (148)

Полученное значение потерь напора подставим в уравнение (144), тогда

.

Отсюда скорость истечения

.                          (149)

Обозначая

,                                    (150)

получим для скорости уравнение

.                                  (151)

Определим расход жидкости

.

Но для насадка  и

,                             (152)

где – коэффициент расхода насадка; – площадь живого сечения насадка.

Таким образом, уравнения для определения скорости и расхода жидкости через насадок имеют тот же вид, что и для отверстия, но другие значения коэффициентов. Для коэффициента сжатия струи (при больших         значениях Re и ) можно приближенно принять , и тогда по формулам (148) и (149) получается . Фактически происходят и потери по длине, поэтому для истечения воды в обычных условиях можно принимать .

Сравнивая коэффициенты расхода и скорости для насадка и отверстия в тонкой стенке, устанавливаем, что насадок увеличивает расход и уменьшает скорость истечения.

Характерной особенностью насадка является то, что давление в сжатом сечении меньше атмосферного. Это положение доказывается уравнением Бернулли, составленным для сжатого и выходного сечений.

Во внутренних цилиндрических насадках сжатие струи на входе больше, чем у внешних, и поэтому значения коэффициентов расхода и скорости меньше. Опытами найдены коэффициенты для воды .

В наружных конических сходящихся насадках сжатие и расширение струи на входе меньше, чем в наружных цилиндрических, но появляется внешнее сжатие на выходе из насадки. Поэтому коэффициенты ,  и  зависят от угла конусности. С увеличением угла конусности до 13° коэффициент расхода  растет, а с дальнейшим увеличением угла уменьшается.

Конические сходящиеся насадки применяют в тех случаях, когда нужно получить большую выходную скорость струи, дальность полета и силу удара струи (гидромониторы, пожарные стволы и т. п.).

В конических расходящихся насадках внутреннее расширение струи после сжатия больше, чем в конических сходящихся и цилиндрических, поэтому потери напора здесь возрастают и коэффициент скорости  уменьшается. Внешнего сжатия при выходе нет.

Коэффициенты  и  зависят от угла конусности. Так, при угле конусности  значения коэффициентов можно принимать равными ; при  (предельный угол) . При  струя вытекает, не касаясь стенок насадка, т. е. как из отверстия без насадка.

Значении коэффициентов ,  и  для насадок

Тип насадок

Наружный цилиндрический……..

1

0 82

0,82

Внутренний цилиндрический ..........

1

0,71

0,71

Конический сходящийся при …………………………..

0,982

0,963

0,946

Конический расходящийся ...

1

0,45

0,45

Коноидальный ...........................……

1

0,98

0,98

Примечание. Для конических насадок коэффициенты дапы для выходного сечения.

Конические расходящиеся насадки применяют в тех случаях, когда необходимо уменьшить скорость истечения, например, насадки для подачи смазочных масел и т. п. В конических расходящихся насадках в месте сжатия струи создается большой вакуум, поэтому их еще применяют там, где требуется создать большой эффект всасывания (эжекторы, инжекторы и т. п.).

Коноидальные насадки имеют очертания формы струи, вытекающей через отверстие в тонкой стенке. Для этих насадок значение коэффициентов составляет: .

Их применяют в пожарных брандспойтах, но редко, так как изготовление их очень сложное.

Для коноидально-расходящейся насадки можно получить коэффициент расхода больше единицы за счет увеличения выходного сечения.

В таблице приводятся средние значения коэффициентов для различных насадок.

Предыдущие материалы: Следующие материалы: